Abstract

Plasma samples were collected from 34 patients with advanced CRC and 92 healthy persons (control group), and the levels of 9 VNAs were measured using GC-MS. Untargeted metabolomics analysis was performed using LC-MS/MS. Partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis were used to determine differential metabolites between the 2 groups. Receiver operating characteristic (ROC) curve analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed on the differential metabolites. It turnedoutthatthe detection rates of N-nitrosodimethylamine (NDMA) and N-nitrosopyrrolidine (NPYR) in patients with CRC were higher than in the control group (P < 0.05). N-nitrosomethylethylamine (NMEA) and N-nitrosodiphenylamine (NDPhA) were not detected in CRC patients. NDMA, N-nitrosodibutylamine (NDBA), N-nitrosopiperidine (NPIP), and NPYR were detected in male and female patients with CRC. There was no difference in VNAs exposure between the sexes of CRC patients. In the positive and negative ion mode, a total of 132 differential metabolites and 6 differential metabolic pathways were detected. Adenosine 5'-monophosphate, hypoxanthine, 11,12-epoxy-(5Z,8Z,11Z)-icosatrienoic acid, 16(R)-HETE, acetylcarnitine, and lysophosphatidic acid (LPA 20:5, LPA 20:4) were candidate biomarkers with higher predictive value. Hypoxanthine and xanthine metabolic pathways were associated with changes in VNAs in CRC patients. In summary, the effects of changes of VNAs in the plasma of CRC patients (especially NDMA and NPYR) on the progression of CRC should attract attention. Abnormalities of adenine and guanine and downstream hypoxanthine-xanthine metabolic pathways were closely related to changes of VNAs and metabolomics in CRC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call