Abstract

SUMMARY In the profile analysis of faults, the distribution of GNSS sites directly affects the accuracy of the results of slip rate and locking depth. This paper discusses strategies for designing the layout of GNSS stations perpendicular to strike-slip faults in terms of site spacing and the Minimum Effective Distance, which is 20 times the locking depth of the fault. Three layout models are proposed considering the complexity of strike-slip faults: (1) Equal spacing layout, in which many stations are deployed in the far field, only a few are deployed in the near field. (2) Equal deformation layout, in which stations are densely arranged in the near field and sparsely arranged in the far field according to the frequency of deformation curve. (3) Equal slope spacing layout, in which stations are arranged according to the nonlinear degree of the deformation curve, with dense distribution in regions with high nonlinearity and sparse distribution in approximately linear regions. The three models were used to redistribute the sites in the Qiaojia to Dongchuan segment of the Xiaojiang fault profile, and their performances were compared with that of the current sites distribution of the segment. The results showed that model 1 is optimal for fitting the accuracy of slip rate and model 3 is optimal for the accuracy of locking depth. Overall, model 3 appears to be the best choice, considering that the accuracy of the locking depth is more difficult to control. One of the main purposes of deployment is to identify the seismogenic depth of the fault. With the locking depth of the fault gradually approaching the depth of the seismogenic layer during an interseismic period, the accuracy of observations of sites deployed at a preset value of historical seismogenic depth of the fault would improve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.