Abstract

Ertugliflozin is a potent and selective inhibitor of sodium-dependent glucose cotransporters 2 (SGLT2) and used as a monotherapy to improve glycemic control in adult patients with type 2 diabetes. In this study, ertugliflozin binding to human serum albumin (HSA) was investigated by multispectroscopic and computer simulations. The fluorescence spectra demonstrated that the quenching mechanism of ertugliflozin and HSA was static quenching. Thermodynamic parameters indicated that hydrogen bonding and van der Waals forces played a key role in the binding. Fluorescence competition experiments and molecular docking revealed that ertugliflozin bound to HSA sites II. In three-dimensional fluorescence, circular dichroism spectroscopy, and molecular dynamics simulation, ertugliflozin did not affect the basic skeleton structure of HSA but slightly increased the α-helical structure content and changed the microenvironment around amino acid residues. Results provide valuable information on the basis of the interaction of ertugliflozin with HSA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.