Abstract

The saffron phenylpropane synthesis pathway and Fusarium oxysporum cell wall-degrading enzymes play key roles in their early interactions. Saffron (Crocus sativus) is a highly important crop with diverse medicinal properties. F. oxysporum is a widely-distributed soil-borne fungus, causing the serious saffron rot disease. Currently, there is no effective management strategy to control this disease because of no resistant cultivars and limited information about the resistance and pathogenic mechanisms. In this study, we first characterized the infection process and physiological responses of saffron infected by F. oxysporum. The molecular mechanism of these infection interactions was revealed by dual RNA-seq analysis. On the 3rd day of infection, the hyphae completely entered, colonized and spread in the corm cells; while on the 6th day of infection, hyphae had appeared in the xylem cells, blocking these vessels. Transcriptome results indicate that within the host, phenylpropanoid metabolism, plant hormone signal transduction and plant pathogen interaction pathways were activated during infection. These pathways were conducive to the enhancement of cell wall, the occurrence of hypersensitivity, and the accumulation of various antibacterial proteins and phytoantitoxins. Meanwhile, in the fungus, many up-regulated genes were related to F. oxysporum cell wall degrading enzymes, toxin synthesis and pathogenicity gene, showing its strong pathogenicity. This study provides new ideas for the control of saffron corm rot, and also provides a theoretical basis for mining the key functional genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call