Abstract

In an HCl medium (pH 1.5), ligustrazine (2,3,5,6-tetramethylpyrazine, TMP) reacted with 12-tungstophosphoric acid (TP) to form a 3 : 1 ion-association complex. As a result, the intensities of resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering (FDS) were greatly enhanced and new scattering spectra appeared. The maximum RRS, SOS and FDS wavelengths of the ion-association complexes were located at 379, 738 and 395 nm, respectively. The scattering intensity increments (ΔIRRS , ΔISOS and ΔIFDS ) were directly proportional to the concentration of ligustrazine within certain ranges. The detection limits (3σ) of RRS, SOS and FDS were 1.6, 3.2 and 2.8 ng/mL. Optimal conditions for the RRS method and factors influencing the method were discussed, and the structure of the ion-association complex and the reaction mechanism were investigated. Transmission electron microscopy (TEM) was used to characterize the structures of the ion-association complex. Based on the ion-association reaction and its spectral response, a rapid, simple and sensitive RRS method for the determination of TMP was developed. It was applied to the determination of TMP in tablet and urine samples with satisfactory results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call