Abstract

The Marangoni effect and Rayleigh-Benard effect in the two-phase region of solar trough heat-absorbing tube are simulated by FTM (front tracking method). Considering the Marangoni effect alone, although surface tension gradient and surface tension affect the interface wave, the two effects have different characteristics. The surface tension gradient caused by the temperature gradient is one of the factors that swing the interface. The amplitude attenuation of the interface wave decreases with the increase of the Marangoni number (Ma). In general, the surface tension gradient enhances the convection opposite to the temperature gradient. Under the gravity field, the Rayleigh-Benard effect influences the development of the vortex structure in the flow field, which in turn affects the velocity gradient near the interface to influence the evolution of the interface fluctuation. In a small Rayleigh number (Ra), the buoyancy convection reduces the velocity gradient, thus suppressing the evolution of the interfacial wave. In the range of Ra < 4.0E4, the larger the Ra, the stronger the inhibitory effect. However, when the Ra number is large (Ra > 4.0E4), the situation is just the opposite. The larger the Ra is, the stronger the promoting effect is.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.