Abstract

PurposeThe present study assesses the impact resistance of the shear thickening fluids-filled (STFs-filled) foam through drop-hammer impact tests.Design/methodology/approachThe maximum residual impact load and specific impact energy absorption rate of STF-filled foam are studied with varying thickness (4–14 mm), densities (0.35–0.6 g/cm3) and hardness (40–50 Rockwell Hardness C Scale (HRC)) under different ambient temperatures (−20−20 °C) and impact energies (25–75 J).FindingsThe following conclusions are obtained from this study: (1) the higher the impact energy, the greater the maximum residual impact force and energy absorption efficiency of the material; (2) the impact resistance of STF-filled foam can be improved with the decrease of ambient temperature, achieving the highest energy absorption rate at −10?. (3) STF-filled foam substrate has the highest impact resistance, the lowest maximum residual impact force and the highest energy absorption coefficient when the density is 0.35 g/cm3, the hardness is 45HC and the thickness is 10 mm.Originality/valueThis is the first paper to analyze the impact of both environmental factors and material properties on the impact resistance of STF-filled foam. The results show that the decrease in temperature and the increase in hardness can enhance the impact resistance of STF-filled foam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call