Abstract

In order to study the influence of machining methods and parameters on the surface quality of carbon fiber reinforced composites (CFRP) in the cutting process, the finite element simulation model of ultrasonic-assisted cutting CFRP was established, the simulation results show that the introduction of ultrasonic reduces the damage degree of CFRP in the cutting process, and the tool attached torsional ultrasonic vibration effect is the most significant. The ultrasonic-assisted torsion and longitudinal cutting tests of CFRP disc were carried out respectively, and compared with the ordinary cutting process, the experimental results show that the introduction of ultrasonic changes the fracture mode of fiber and effectively reduces the surface roughness. The fiber cutting angle (the angle between the cutting speed direction and the fiber direction) is the main factor affecting the surface roughness of CFRP, the effect of ultrasonic is better in the low-speed area, and the direction of fiber can be weakened by high-speed processing. When the amplitude is in the range of 0 ~ 6 μm, with the increase of amplitude, the advantage of ultrasonic is more obvious, and the inhibition of the influence of fiber directivity is more obvious. The results show that large amplitude and small cutting speed can achieve better ultrasonic machining effect; large vibration amplitude and high cutting speed can effectively suppress the influence of fiber directivity. The results are helpful for the high-quality processing of CFRP and other composite materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call