Abstract
The area of permafrost worldwide accounts for approximately 20% to 25% of land area. In cold-climate regions of China, which are garnering international attention, the study of low-temperature and moisture effects on rock mass mechanical properties is of significant importance. China has a wide area of cold regions. This research can provide a foundation for China's exploration activities in such extreme environments. This paper examines the mechanical behavior of rock specimens subjected to various low temperatures and water contents through uniaxial compression tests. The analysis encompasses failure modes, stress-strain relationships, uniaxial compressive strength (UCS), and elastic modulus (EM) of these specimens. Findings reveal that at lower temperatures, the rock specimens' fracture patterns transition from compressive shear failure to cleavage failure, reflecting a shift from a plastic-elastic-plastic to a plastic-elastic response. Specifically, saturated rocks exhibit a 40.8% decrease in UCS and an 11.4% reduction in EM compared to their dry counterparts. Additionally, in cold conditions, an increased water content in rocks primarily leads to vertical cracking. Under such conditions, saturated rocks show a 52.3% decline in UCS and a 15.2% reduction in EM, relative to their dry state.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.