Abstract

In metal cutting, tool vibration is a significant parameter, which results in high cutting force, increase in tool wear and poor surface quality of the finished product. To control tool vibration, an innovative and a robust damper was required. In this regard, a magnetorheological elastomer was fabricated, and the effect of parameters like the ratio of iron particles to elastomer; plunger shape and intensity of current were studied. Cutting experiments were conducted to arrive at an optimum set of parameters, which can suppress tool vibration during turning of hardened SS410 steel. From the experimental results, it was observed that the use of magnetorheological elastomer has reduced the tool vibration by 60% and also improved the cutting performance significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call