Abstract
Enhancement in the resilience of superhydrophobic coatings is crucial for their future applicability. However, the progress in this aspect is currently limited due to the lack of a consistent resilience analysis methodology/protocol as well as the limited understanding of the influence of the materials components on the resultant coating performance. This study applies a quantitative analysis methodology involving image analysis and mass tracking and utilizes it to investigate how the properties of coating components can influence coating resilience. The factors examined were changing the molecular weight/tensile strength of poly(vinylchloride)/poly(dimethylsiloxane) (PVC/PDMS) polymers and changing the size of the roughening particles. In addition to the examination of resilience data to evaluate degradation patterns, three-dimensional (3D) mapping of the scratches was performed to obtain an insight into how material removal occurs during abrasion. The results can indicate preferential polymer selection (using higher-molecular-weight polymers for PVC) and optimal particle sizes (smaller particles) for maximizing coating resilience. The study, although focused on superhydrophobic materials, demonstrates wide applicability to a range of areas, particularly those focused on the development of high-strength coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.