Abstract

To obtain the influence of the neighbour room heat transfer on the radiator heat transfer characteristics and indoor thermal environment, a new k-ε model is used to numerically simulate the radiator surface heat transfer ability, indoor velocity field and temperature filed at different neighbour room heat transfer temperature differences. The results indicate that both the radiator surface temperature and the average Nusselt numbers on radiator surface are approximately increasing with the increasing neighbour room heat transfer temperature differences when the indoor average temperature is up to 18°C. At the same neighbour room heat transfer temperature difference, the local heat transfer ability is decreasing gradually from the bottom to the top of the radiator surface. The temperature gradient close to the floor is decreasing with the increasing neighbour room heat transfer temperature difference and the indoor temperature is tending to be more homogeneous. And the velocity gradients close to the ceiling and the internal surface of east wall are higher for the case that the neighbour room heat transfer is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call