Abstract

Solder joint reliability is very important to ensure that an integrated circuit (IC) semiconductor package is functional within its intended life span as the solder joint establishes electrical connection between the IC and the printed circuit board (PCB). Solder fatigue failure or crack under thermal cycling is one of the common problems with board-mounted packages. There are several factors or package characteristics that have impact on solder fatigue life like package size and material properties of the package components. This paper presents a thermo-mechanical modeling of a leadframe-based semiconductor package to study the impact of lead sidewall solder coverage and corner lead size on the solder joint reliability. Finite element analysis (FEA) technique was used to calculate the solder life considering 50% and 100% package lead sidewall solder coverage as well as smaller and larger critical corner leads of the package. The results of the analysis showed that higher lead sidewall solder coverage and larger lead could significantly increase solder life. Therefore, ensuring lead sidewall solder wettability to have higher solder coverage is beneficial. The study also reveals that packages with side wettable flanks are not only enabling high speed automated optical inspection required for the automotive industry, but they are also providing improved solder joint reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call