Abstract
Global warming increases global average precipitation and evaporation, causing extreme climate and hydrological events to occur frequently. Future changes in temperature, precipitation, and runoff from 2021 to 2050 in the upper reaches of the Minjiang River were analyzed using a distributed hydrological model, the SWAT (Soil and Water Assessment Tool), under a future climate scenario. Simultaneously, future variation characteristics of extreme climate hydrological elements in the upper reaches of the Minjiang River were analyzed using extreme climate and runoff indicators. The research shows that the frequency and intensity of the extreme temperature warming index will increase, while those of the extreme temperature cooling index will increase and then weaken in the upper reaches of the Minjiang River under a future climate scenario. The duration of precipitation, the intensity of continuous heavy precipitation, and the frequency of heavy precipitation will increase, whereas the intensity of short-term heavy precipitation and the frequency of heavy precipitation will decrease. However, spatial distribution of flood in the upper reaches is different, and thus flood risk in the upstream source area will still tend to increase. Particular attention should be given to the increase in autumn flood risk in the upper reaches of the Minjiang River.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.