Abstract

The electronic properties of a sandwich graphene(N)–Sc–graphene(N) structure and its average adsorption energies after the adsorption of 1, 3, 5, 7, 10, and 14H2 molecules were investigated by first principles. The average binding energies and adsorption distances of Sc atoms at different adsorption sites in N-doped bilayer graphene (N–BLG) were calculated. It was found that Sc atoms located at different adsorption sites of BLG generated metal clusters. The binding energy of the Sc atom located at the TT position of N–BLG (5.19 eV) was higher than the experimental cohesion energy (3.90 eV), and eliminated the impact of metal clusters on adsorption properties. It was found that the G(N)–Sc–G(N) system could stably adsorb 10 hydrogen molecules with an average adsorption energy of 0.24 eV. Therefore, it can be speculated that G(N)–Sc–G(N) is an excellent hydrogen storage material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.