Abstract

SiOC coatings were prepared on X70 pipeline steel substrate by a simple dipping method at low temperatures, and their performance of hindering hydrogen penetration was studied through electrochemical hydrogen permeation experiment. The sample thermal-treated at 120 °C achieved a low diffusion coefficient of hydrogen of 8.20 × 10−9 cm2 s−1, which was nearly three orders of magnitude lower than 3.58 × 10−6 cm2 s−1 for the X70 steel. This was due to that the amorphous coating did not provide a stable hydrogen diffusion channel, thus limiting hydrogen diffusion. Density functional theory (DFT) calculation further proved that hydrogen moleculars were difficult to be adsorbed at different sites on the surface of the coating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.