Abstract

In this paper, a new type of total spray tray (TST) with gas–liquid countercurrent contact is proposed to solve the problem of slight operation flexibility and poor sloshing resistance in towers under offshore conditions. Its hydrodynamic performance indicators, such as pressure drop, weeping, entrainment, and liquid level unevenness, were experimentally studied under rolling motion. A tower with an inner diameter of 400 mm and tray spacing of 350 mm was installed on a sloshing platform to simulate offshore conditions. The experimental results show that the rolling motion affected the hydrodynamic performance of the tray under experimental conditions. When the rolling amplitude did not exceed 4°, the degree of fluctuation of the hydrodynamic performance was small, and the tray could still work stably. With increasing rolling amplitude, the TST wet plate pressure drop, weeping, and liquid level unevenness fluctuations also increased. When the rolling amplitude reached 7°, the maximum fluctuation of the wet plate pressure drop was 8.9% compared to that in the static state, and the plate hole kinetic energy factor, as the TST reached the lower limit of weeping, increased rapidly from 6.2 at rest to 7.8 under the experimental conditions. It can be seen that the TST still exhibits good hydrodynamic performance under rolling motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call