Abstract
Groundwater is the only water source of the shelterbelt along the Taklimakan Desert Highway in northwestern China. Understanding the hydrochemical zoning characteristics, material source, and hydrochemical processes of this desert groundwater is important for rational groundwater exploitation. Meanwhile, determining the location of the dividing boundary, which divides the influence ranges of the Tarim river and the Kunlun mountain river system on the desert groundwater, is meaningful for the local desert hydrogeological study. For these objectives, 105 groundwater samples were investigated to obtain analytical data of groundwater chemistry, and ionic relations methods including ratio graphs and Gibbs plots were applied in the chemical analysis for these data. Chemical analysis shows that desert groundwater is characterized by Cl·SO4–Na·Mg and Cl−·SO4–Na types with total dissolved solid (TDS) of 2.80–29.77 g/L. Spatial variation patterns of major ions, TDS, and SO42−/Cl− molar ratio reveal clear four hydrochemical zones along the groundwater flow direction on one hand; on the other hand, these variation patterns also indicate that the boundary dividing the influence ranges of the Tarim river and the Kunlun mountain river system is the approximate location of Well 030. Ratio graphs show that the average molar ratios (Na+ + K+)/Cl− (1.05) and (Ca2+ + Mg2+)/SO42− (0.93) are approximately equal to 1, and there is an approximately linear correlation between (Na+ + K+) and SO42−. These results reveal that the groundwater composition is mainly influenced by dissolution of evaporate (halite, gypsum, and mirabilite). Moreover, ionic relations demonstrate that the dominating hydrochemical processes in the groundwater evolution are evaporation and cations exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.