Abstract

Based on the hot compressive tests in the temperature range of 700-900 °C and strain rate range of 0.01-10 s−1, the hot deformation behavior of a Cu-Cr-In alloy was investigated. The true stress–strain curves of the alloy were obtained, and a constitutive equation for the alloy was established by the method of equivalent stress. The processing maps were constructed based on the constitutive equation, and the microstructural evolutions were analyzed and correlated with the processing maps. The results show that the true stress of the alloy increased with decreasing strain rate and decreased with increasing temperature. The microstructures of the alloy deformed under different conditions were in good accordance with the processing maps results. According to the processing maps and the microstructures of the alloy with true strains of 0.4 and 0.8, the optimal hot deformation conditions lie in the range of 850-900 °C and strain rate range of 0.01-0.1 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.