Abstract

In this work, a new type of marine rubber airbag branch pile has been presented, and the influences of the exposed length L0 of the pile, size of rubber airbag branch and depth S0 of rubber airbag branch embedded in soil on the horizontal bearing capacity of the pile, have been investigated using numerical simulations. Simulation results were used to modify the eigenvalue equations of the horizontal bearing capacity. The results also showed that reverse displacement and the bending moment of the rubber airbag branch pile were lower in pipe piles with larger diameters, and the horizontal bearing capacity was more stable. At small horizontal displacements of the pile top, horizontal bearing capacities of large-diameter pipe piles were slightly higher, while for the pile’s top horizontal displacements of above 10 mm, horizontal bearing capacities of rubber airbag branch piles became significantly greater than those of the large-diameter pipe piles. Based on assumptions, the calculation equations of vacuum negative pressure and friction force between the rubber airbag branch and soil were derived. The equations for calculating the characteristic horizontal bearing capacities of rubber airbag branch piles were also derived and were modified based on simulation results. The calculation results confirmed the improvement in the accuracy of the modified equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.