Abstract

In situ thermal remediation can rapidly remove volatile organic pollutants, regardless of permeability or heterogeneity in the subsurface, which has received more attention in recent years. This study aims at investigating the heat transfer during thermal conduction heating (TCH), a heating method of in situ thermal remediation. The experiments were performed in a 134.5-cm tall × 107.5-cm wide × 7.5-cm thick tank containing a heating resistance to heat the aquifer and 62 thermocouples to measure temperature. The temperature of the points was recorded in real time through a multi-channel temperature patrol instrument. Then, isotherms were drawn, which were quantitatively analyzed from the aspects of temperature distribution, heated zone area, heat transfer distance, and influencing radius. The influence of groundwater velocity, aquifer medium, and heating resistance power was investigated. The results show the following: (1) The quantitative analysis proved that the higher the groundwater velocity, the faster the heated zone reaches a stable state. (2) The heated zone area in a coarse/fine sand aquifer is larger than that in a medium sand aquifer, and the stable time of the heated zone is in the order of fine sand < coarse sand < medium sand. (3) The greater the heating resistance power is, the more rapidly the heated zone reaches a stable state. (4) It has been quantitatively concluded that the V-shaped distribution of the heated zone is more obvious at a high groundwater velocity or with a high-power heating resistance. These findings are significant for the practical application of Thermal conduction heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.