Abstract

The dispenser ejects the ceramic filler and phosphor-containing liquid for making various products. When the particle-containing liquid is ejected under high-velocity conditions, however, the ejection reliability decreases because of the wear of the contact surface between the rod and nozzle even though these components are made of hard materials. It is therefore necessary to characterize the friction and wear properties of the hard materials, tungsten carbide (WC) and zirconium (Zr), with the high-viscosity liquid-containing nitride or yttrium aluminum garnet (YAG) particles under reciprocating conditions. Particle contents of 15 wt.% and 30 wt.% are added to the liquid. A reciprocating test was implemented to this end, and WC and Zr specimens were used. The liquid used in the experiment contains nitride and YAG. The experimental results show that the particles inside the liquid are worn out, leading to particle lubrication and the decrease in the coefficient of friction. Also, it is confirmed that the more the particles are, the less the coefficient of friction is due to particle lubrication. For each experimental condition, the coefficient of friction is measured and compared. Moreover, the contact surface of the specimen is analyzed using an electron microscope, and a profilometer is used to measure the surface roughness of the specimen before and after the test. The reciprocation friction and wear characteristics of WC and Zr with phosphor-containing liquid are evaluated by analyzing the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call