Abstract

Grid-to-rod fretting wear is an important factor causing the fuel failure in nuclear power plants. Accident tolerant fuel (ATF) Cr coating and oxide ceramic coating have been developed to improve the fretting wear performance. In this research, two different oxide layers and Cr coating were prepared on zirconium (Zr) alloy, and the fretting wear performance were studied. The morphology, microstructure, tribo-corrosion reaction, and wear characteristics were analyzed. The oxide layer formed at high-temperature pressurized water (HTPW) has the lowest wear rate of 0.11×103 μm3/Nm due to the high hardness and compact structure, which leads to the corresponding friction pairs presenting the highest wear rate of 8.42×103 μm3/Nm. The wear depth of oxide layer formed at HTPW is about 5 times lower than that of as-received Zr alloy, and it is also less than the thickness of oxide layer. The oxide layer formed at HTPW after fretting has a larger thickness than the initial state because the plastic deformation layer caused by shear stress can quickly oxidize to zirconia in high-temperature water, and the wear rate of oxide layer is lower than the formation rate of oxide layer. The wear mechanism of two different oxide layers is delamination and abrasive wear, and that of Cr coating is abrasive wear and fatigue wear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.