Abstract

Freezing temperature is an important parameter in studying the freezing mechanism of saline soil. An equation for calculating the freezing temperature is proposed based on the phase transition theory in porous medium, including two main influencing factors, the water activity and pore size. In this equation, the effect of the water activity on the freezing temperature of soil is calculated by Pitzer model, while the impact of pore size is replaced by water content. Through comparing the calculated results with the published experimental data, the equation is proved to be competent in predicting the freezing temperature for the saline soil with sodium chloride or calcium chloride. For the saline soil with sodium carbonate, the effect of salt hydrate crystallization should be taken into consideration. With respect to the saline soil with sodium sulfate, it is difficult to determine the freezing temperature, since there is uncertainty of the resultant when freezing (that is, heptahydrate or decahydrate). In addition, the effects of pore size and multi-component solutes on freezing temperature are also discussed. The study would be helpful for revealing the freezing mechanism and also providing a useful theoretical method for engineering design of saline soil in cold regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call