Abstract

Abstract The Polymer Electrolyte Membrane Fuel Cell produces electric energy, heat and water during its operation. Therefore, the management of the heat and water produced by PEMFC has become a critical issue of study. The flooding phenomenon in the cathode channel causes concentration loss at high current density, and this loss suddenly decreases the fuel cell efficiency. Current research on the water management of the PEMFC mostly investigates the flooding phenomenon, itself, in the cathode channel. This research presents the optimized design of the channel by studying the flooding phenomenon in the PEMFC under the Concus-Finn condition and the performance improvement by using computational simulation. A new water removal method applying a Concus-Finn condition is presented. The prevention of flooding in the cathode channel of the PEMFC is investigated by visualization experiments, simulations and performance experiments for various reactant RH value and channel shapes under the Concus-Finn condition. Based on the results, a new channel shape that can prevent flooding in the PEMFC is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.