Abstract

To investigate the energy transfer and electron transfer of the photo-induced excited state in porphyrin sensitizers, we built the “zinc porphyrin-2, 2, 6, 6-tetramethylpiperidinooxy-xylene” experimental system. Zinc porphyrin's UV-visible spectrum shows that the characteristic absorption line of zinc porphyrin consists of bands B and Q, which are generated by the transition of elections from the ground state to the excited state in molecules of zinc porphyrin. The electron paramagnetic resonance spectrum of the experimental system is produced under the UV-visible light irradiation, at a temperature of 143 K; and we have detected the enhanced electron paramagnetic resonance spectrum of 2, 2, 6, 6-tetramethylpiperidinooxy. Based on the theory of the molecular excited states, and the photophysical and photochemical theory as well as the theory of the chemical-induced electron spin polarization, we also analyze the experimental results. Our conclusion is that the enhanced electron paramagnetic resonance spectrum of 2, 2, 6, 6-tetramethylpiperidinooxy is caused by the energy transfer and electron transfer of the photo-induced excited state in the porphyrin sensitizers. The anisotropic characteristics of the phenomenon of electron paramagnetic resonance spectrum of 2, 2, 6, 6-tetramethylpiperidinooxy at low temperatures are due to the anisotropic hyperfine interaction between nitroxide electrons and nitrogen nuclear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.