Abstract

To maintain the safety and functionality of dams over the long term, it is necessary to make inspections more labor-saving and efficient using the latest technology and to improve the sophistication of inspections based on data. Although dam inspections cover a wide range of items, this study focuses on the continuous monitoring of popouts, a phenomenon of concrete deterioration occurring on the surface of a dam body. It is difficult to predict whether a popout will occur from information on the body surface of the dam, owing to the generation mechanism of the popout. The number of popouts was monitored over time; however, no examples of shape changes were monitored over time. Advancements in various digital technologies are required to accurately evaluate changes in the dam body's surface over time; therefore, in this study, three-dimensional (3D) point-cloud data is created by the Structure from Motion (SfM) from images captured by a Unmanned Aerial Vehicle (UAV) of the concrete defect area due to the popout in an arch dam in the Tohoku region of Japan. The volume of concrete defects of a popout in each of two different periods was calculated by estimating the plane shape of the surface of the dam body. In addition, the shapes of two popouts were compared to confirm the possibility of predictive signs of change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.