Abstract

We have systemically studied the effect of the erbium on the microstructure and the mechanical properties in the 5xxx series aluminum alloys by using optical microscope, transmission electron microscope (TEM) and by tensile testing. The results demonstrate that the tensile strength increased quickly at the beginning of small contents of 0.1%Er both in the hot and cold rolled states, then slowly increased with increasing the contents of Er until 0.4%, at which the best balance of the strength and ductility (438MPa and 9.6%) were obtained. Microstructure observation in the hot rolled state was indicated that the grain structure in the Er free Al-5Mg alloy revealed fully recrystallized grain structure, while in the Al-5Mg containing Er was demonstrated deformation structure, indicating the Er addition delayed the recrystallization behavior by the formation of the precipitation of the Al3Er, which confirmed by means of the X-ray diffraction analysis. Furthermore in the TEM microstructure observation the precipitation of Al3Er was distributed both in the grain interior and subgrain or grain boundaries, which could be pinning the subgrain or grain boundary migration and dislocation movement as well. Consequently the beginning of the recrystallization temperature in the Al-5Mg containing Er was elevated about 50°C than in Al-5Mg without Er. This could be explained that the strength increased without the deterioration of the ductility was attributed to the microstructure refinement by the Er addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call