Abstract

Collecting water from fog flow has emerged as a promising strategy for the relief of water shortage problems. Herein, using a UV-induced (ultraviolet light induced) controllable diffusion method combined with technology of three-dimensional (3D) printing, we fabricate biomimetic materials incorporating beetle-like hydrophobic–hydrophilic character and cactus-like cone arrays with various structure parameters, and then systematically study their fog-harvesting performance. The UV-induced controllable diffusion method can break away from the photomask to regulate the hybrid wettability. Moreover, employing 3D printing technology can flexibly control the structure parameters to improve the water collection efficiency. It is found that the water collection rate (WCR) can be optimized by controlling the hybrid wettability of the sample surface and cone distance and using substrates with printed holes, which lead to a 109% increase of WCR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.