Abstract
New polyimide composite membranes were prepared by physical incorporation of different amounts of TiO2 nanotubes (TNTs) and carbon nanotubes (CNTs) into a poly(amic acid) solution, followed by film casting and thermal imidization. The poly(amic acid) was synthesized by polycondensation reaction of 4,4′-(1,3-phenylenedioxy)dianiline with 4,4′-oxydiphthalic anhydride, in N-methyl-2-pyrrolidone as solvent. TNTs having outer diameters of approximately 10–12 nm and length of several hundred of nanometers were obtained by hydrothermal method. Their surface was modified by treating with 3-aminopropyltriethoxysilane to enhance organic–inorganic compatibility and to avoid agglomeration. A study of microelectromechanical properties of these membranes was performed. The influence of filler content on nanometric displacements when an electric voltage is applied on the membrane surface was determined. Also, theoretical aspects on the combined effects thermal and electrostrictive actuation are presented. The longitudinal microactuation included only electrothermal effect. The microactuation including electrostrictive effect as well as electrothermal effect was remarkable to the small electric field intensity and to small temperature domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.