Abstract

A series of dust explosion experiments were conducted using a minimum ignition energy experimental device to investigate the explosion flame of AlSi10Mg dust and its influencing factors. The microscopic morphology of the AlSi10Mg dust explosion flame was captured using a high-speed camera, and the effects on flame characteristics were observed by varying the confined space opening pressure and ignition energy. The results indicated that when the Hartmann tube was in a closed state, the maximum instantaneous rate of flame initially increased and then decreased with increased opening pressure. Conversely, the maximum instantaneous flame rate decreased initially and then increased with an increased ignition energy. The experimental results were valuable for preventing dust explosions in industrial production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call