Abstract

Slow pyrolysis, a widely recognized thermochemical technique, is employed to produce biochar usually under inert atmospheres. Recently, there is a growing interest in utilizing CO2 as a carrier gas during pyrolysis as an alternative to inert atmospheres, aiming to modify the resulting pyrolytic products and make them suitable for different applications. This study investigated and compared the impact of CO2 atmosphere with N2 on pyrolysis of food waste, rice husk, and grape tree branches waste via slow pyrolysis at temperatures of 400, 500, and 600 °C at 5 and 15 °C/min for 1 h, to evaluate biochar production and its properties. The results demonstrate that CO2 atmosphere increased the biochar yield for all feedstocks and significantly influenced the physicochemical properties of biochar. Compared to N2, CO2-derived biochar exhibited less volatile matter, higher carbon content, lower O/H and O/C molar ratios and enhanced textural properties. This study highlighted the potential of utilizing CO2 for biochar production and tailoring biochar properties for specific applications and the findings contribute to the establishment of sustainable and efficient waste management systems and the production of value-added biochar products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.