Abstract

Bioaerosols can represent a danger to health. During SARS-CoV-2 pandemic, portable devices were used in different environments and considered a valuable prevention tool. This study has evaluated the effectiveness of the air treatment device "AEROK 1.0®" in reducing microbial, particulate, and pollen airborne contamination indoors, during normal activity. In an administrative room, airborne microbial contamination was measured using active (DUOSAS 360 and MD8) and passive sampling; a particle counter was used to evaluate particle concentrations; a Hirst-type pollen trap was used to assess airborne pollen and Alternaria spores. Statistical analysis was performed using SPSS 26.0; p values < 0.05 were considered statistically significant. The airborne bacterial contamination assessed by the two different samplers decreased by 56% and 69%, respectively. The airborne bacterial contamination assessed by passive sampling decreased by 44%. For fungi, the reduction was 39% by active sampling. Airborne particles (diameters ≥ 1.0, 2.0 μm) and the ratio of indoor/outdoor concentrations of total pollen and Alternaria spp. spores significantly decreased. The results highlight the effectiveness of AEROK 1.0® in reducing airborne contamination. The approach carried out represents a contribution to the definition of a standardized model for evaluating the effectiveness of devices to be used for air disinfection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.