Abstract

Size irregularity gradient and cell wall gradient, combined as the density gradient in previous studies, affect the macroscopic mechanical properties of the gradient metal foam. More and more complex mesostructures are designed and applied in metal foams, and the density gradient becomes insufficient to describe the difference in mesostructures. To explore the effect of mesostructures carefully, this study focuses on the effect of the size irregularity gradient on the macroscopic compressive properties of metal foams. A series of metal foam models were developed using the 3D Voronoi technique. These models have the same average relative densities, the same average diameters and different size irregularity gradients. Simulation results indicated that the macroscopic mechanical properties of cell wall gradient metal foams are significantly different from those of size irregularity gradient metal foams, though these models have the same relative density gradient. To explore the effect of size irregularity gradient, a theoretical model was developed to characterize the compression process from the first cell-collapse to full condensation. Theoretical results showed a linear relationship between the nominal stress and the current relative density. These findings can provide efficient guidance for the design and applications of gradient metal foams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.