Abstract
Abrasive waterjet (AWJ) turning is an emerging technology, which plays an important role in machining cylindrical parts with the distinct advantages of negligible thermal effects and extremely low cutting force. This paper presents an experimental study of abrasive waterjet turning (AWJT) of Al2O3ceramics. The machining process and performance in terms of the depth of penetration (DOP), surface roughness (Ra) and actual impact angle (β) are discussed to understand the effect of standoff distance (SOD) on the processing performance at two different turning modes. Based on the results of these investigations, there is a significant change ofDOPandRaat differentSODin radial mode turning and the optimalSODof gaining maximumDOPand the minimumRais about 5.5mm.However, theDOPis nearly independent on theSODin offset mode turning. SmallerRaandDOPcan be obtained in offset mode. Furthermore, the results indicate that the roundness error of cylinder parts is probably improved with the properSODinterval in radial mode turning and it is suitable for machining cylinder part with considerably different radial size. The offset mode turning as the next operation after radial mode turning is recommended to process workpiece with excellent roundness. In this way, by understanding the effect ofSODon processing alumina ceramics, the paper establishes a good basis for developing strategies for optimizing processing parameters in order to generate the desired part geometry and achieve better surface quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.