Abstract
This study investigates the impact of silicon (Si) on the corrosion resistance and post-corrosion toughness of ferrite/martensitic (F/M) steels in a liquid lead-bismuth eutectic (LBE) environment. Corrosion tests were performed on HT-9 and EP-823 (1.17 wt.% Si) steels at 550 °C for 1000 h under oxygen-controlled conditions. The resulting oxide layer consisted of an outer magnetite layer, a spinel layer and an inner oxide zone (IOZ). A Si-rich oxide layer was identified within the spinel and IOZ layers of EP-823, which slowed the growth rate of the oxide layer, enhanced antioxidant performance, and inhibited dissolution corrosion by the LBE. Post-corrosion mechanical properties were evaluated using a small punch test. Results showed a significant reduction in HT-9’s toughness within 240 h of corrosion, while EP-823 exhibited increased brittleness after 500 h due to Si-promoted carbide and Laves phase precipitation, significantly reducing its toughness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.