Abstract
In the wake of economic and population growth, increased wastewater production poses a challenge related to sewage sludge treatment, which is problematic given its high moisture content, amount, and hazardous characteristics. This study focuses on the hydrothermal carbonization of sewage sludge to produce carbonous material-hydrochar, which may be an alternative to fossil fuels. The effect of process parameters, namely, temperature (180, 240, 300 °C) and duration time (30, 90, 180 min), on hydrochar properties (proximate and ultimate analysis, heating values) and process performance were studied. Obtained results indicate and confirm that hydrothermal carbonization, especially temperature increase, improves the fuel properties of carbonized sewage sludge. The highest low heating value was obtained for hydrochar derived at 300 °C in 180 min (~23 MJ × kg-1). The highest energy gain was noted for hydrochar derived at 240 °C in 180 min (~23%). As well as relatively high mass and energy yield in comparison to other hydrochars, these parameters are considered the most favorable for sewage sludge hydrothermal carbonization. However, high energy consumption (over 1300 kJ × g-1) suggests that more research on the process's economical efficacy is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.