Abstract
The nitrogen transformation during sludge pyrolysis is affected by the dewater conditioner. However, the comparative analysis of the conditioner under identical pyrolysis conditions has been previously absent. In this study, Ca-, Fe- and Al-based conditioners were selected as the representatives. A comprehensive evaluation considering the cost of the conditioners and the product characteristics was conducted. Additionally, the in-situ fixation mechanism of the conditioner on nitrogen-containing gas was concurrently revealed. Among the six conditioners, CaO and AlCl3 were identified as the top performers, ranking first and second, respectively. Furthermore, Fe/Ca-based conditioners reduced NH3 and HCN release by 1.5 ∼ 5.53 % and 0 ∼ 1.55 %, respectively, by facilitating the conversion of amine-N to a more stable form in condensable fraction. Fe promoted volatile amine-N cyclization, while Ca encouraged its dehydrogenation. Both Fe/Ca-based conditioners increased 7.5 ∼ 14.8 % nitrogen retention in char, by inhibiting the decomposition of protein-N. Al-based conditioners had little effect on NH3 and HCN, but contributed to 2.3 ∼ 2.8 % production of stabilized nitrogen in char. The introduction of Cl in Fe/Ca/Al chloride conditioners would promote the decomposition of inorganic ammonium salts to produce NH3 at 30 ∼ 185 °C. And Cl also reacted with volatiles through electrophilic substitution reaction, leading to the formation of halogenated hydrocarbons in condensable fraction and the release of more NH3, HCN, and HNCO at 30 ∼ 465 °C. The findings of this study provide a detailed comparative analysis of various conditioners under uniform conditions and reveal the in-situ fixation mechanism of nitrogen-containing gas. This will provide guidance for the sludge conditioning-dewatering-drying integrated treatment and disposal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.