Abstract

As an environmentally friendly natural polymer, citric acid-modified chitosan (CAMC) can effectively regulate the hydration and exothermic processes of cement-based materials. However, the influence of CAMC on the macroscopic properties of concrete and the optimal dosage are still unclear. This work systematically investigates the effects of CAMC on the mixing performance, mechanical properties, shrinkage performance, and durability of concrete. The results indicated that CAMC has a thickening effect and prolongs the setting time of concrete. CAMC has a negative impact on the early strength of concrete, but it is beneficial for the development of the subsequent strength of concrete. With the increase in CAMC content, the self-shrinkage rate of concrete samples decreased from 86.82 to 14.52 με. However, the CAMC-0.6% sample eventually expanded, with an expansion value of 78.49 με. Moreover, the long-term drying shrinkage rate was decreased from 551.46 to 401.94 με. Furthermore, low-dose CAMC can significantly reduce the diffusion coefficient of chloride ions, improve the impermeability and density of concrete, and thereby enhance the freeze-thaw cycle resistance of concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call