Abstract

Previous Smoothed Particle Hydrodynamics (SPH) study on water entry issues has primarily been conducted for the load analysis of impact phase rather than the cavity oscillation effect because the calculation and simulation of this complex physical process are more complicated and time consuming. In order to increase computational efficiency and accuracy, the multiphase δ+-SPH model is combined with Adaptive Particle Refinement technology to investigate the whole process of the wedge's water entry. The hydrodynamic phenomena in the stages before cavity closure for the four cases with different Froude numbers (Fn) are compared and analyzed. After the cavity is pinched off, the wedge exhibits kinematic oscillation. Our test shows that the adoption of sound speed has a significant influence on the oscillation period and peak value of closed cavities in weakly compressible SPH calculations. Then, a suitable sound speed adoption is selected to simulate the oscillatory phenomenon accurately. Comparing the pressure profile with the surface pressure and acceleration of the wedge at the same time, it can be concluded that the oscillation of the hydrodynamic load on the wedge is caused by the pressure oscillation in the closed cavity. Especially for the case of low Fn, the pressure peak on the wedge's surface in the oscillation stage is even greater than the pressure load in the impact stage. The peak pressure of closed cavity is positively correlated with Fn and negatively correlated with Euler number (Eu). Finally, by analyzing the influence of wedge width and impact velocity, it is found that the oscillation period of the closed cavity is related to the morphology of the cavity. The larger the aspect ratio of the closed cavity, the longer the oscillation period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.