Abstract
To predict chitosan/cotton yarn properties in ring spinning, a particle-level simulation method has been used to simulate the dynamics of the fibers with different initial positions in three-dimensional airflow around counter-rotating cylinders. The results show that the fibers near the cylinder end-face can leave two cylinders’ nip and move around the top cylinder, thus form fly waste. It is good to entangle other fibers as this gives the fiber greater bending energy. Compared with cotton fiber, the axial-direction deflections of the tail-ends of chitosan fibers near the cylinder center are much greater, while their bending energies are much lower, thus forming a wide triangle zone and reduced fiber–fiber cohesion force and yarn strength. To demonstrate the simulation results, a series of spinning experiments are completed, which tally with the predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.