Abstract

AbstractStability prediction for bedded rock slopes under seismic loading is very important for landslide hazard assessment. To clarify the dynamic behaviors and damage mechanism of dip bedded slope, shaking table tests and its prototype simulation analyses were performed. Shaking table tests were conducted to analysis the acceleration dynamic response firstly and then the discontinuous deformation analysis (DDA) method was used to reproduce the test results, and study the influence of vertical earthquake on the dynamic response of dip bedded rock slope. Both the two methods results reveal that the amplification coefficients increase with increasing acceleration amplitude under sinusoidal waves shaking condition, and show an increased trend with the relation height. With Wenchaun waves loading, the discontinuous characteristics between the test model and numerical model are consistent, the dynamic responses of the slope tops are strong, and it is easy to be destroyed. Compare the failure mechanism of the slope between shaking table test and numerical method, the damage areas both the numerical model and test model are the nearly identical, and the failure modes of two models are mainly the cracking sliding failure. Moreover, with horizontal and vertical earthquake loading, the acceleration response on the numerical slope top is strong, and the maximum peak acceleration amplification factors are at the leading and rear edges of the slope top. In overall, the dynamic response of the slope surface is more significant than that inside the slope. However, with an increase of amplitude, acceleration responses are different with different directional loading, the acceleration response with horizontal loading is stronger than with vertical loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.