Abstract
Studies on the drag of 28 kinds of cylinder-shaped particles with different sizes and materials were experimentally carried out in steady upward gas flow. The drags were determined by high-resolution digital image processing. Two charge-coupled devices with different frame rates were employed to record the particle movements during experimental investigations. The effects of particle properties (length, diameter, density, and sphericity) and operating conditions (gas velocity and particle Reynolds number) on drag coefficients of single falling cylinder have been systematically tested. The results showed that the drag coefficient first declines sharply and then gradually with increasing particle Reynolds number; finally, it can reach a constant level if the Reynolds number is large enough to exceed a certain value. It was found that the drag coefficient is significantly dependent on particle shape and size for a fixed particle Reynolds number. It increases with increasing particle length and density but decreases with increasing particle diameter and sphericity. In addition, the usability of correlations in publications for predicting the drag coefficient was evaluated by comparing our experimental data. A new correlation considering the effect of particle size, shape, orientation, and density was proposed for predicting the drag coefficient for cylinders, which was in satisfactory agreement with the present experiments and some published experimental results. The correlation is helpful for predicting the drag coefficient for cylinders in ranges of the particle Reynolds number Rep = 500–10 500, flatness ratio da/dv = 0.95–1.28, and sphericity φ = 0.70–0.87.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.