Abstract

In order to reveal the dissolution process, the adsorption kinetics and diffusion theory are combined and used to describe the adsorption-diffusion mechanism. This can not only predict the solubility of supercritical CO2 in polymer melts but also describe two important parameters of supercritical CO2 in the dissolution process: dissolution amount and dissolution rate, which can provide a good theoretical basis for microcellular foaming. To verify the feasibility and accuracy of the theoretical calculation method, an experimental device for the volume-changing method under static condition was established. The results showed that the theoretical calculation value was in good agreement with the experimental value. In addition, the dissolution amount and dissolution rate of supercritical CO2 in three polystyrene melts with different molecular weights under different temperature and pressure conditions were measured. The results showed that the difference of polystyrene molecular weight can cause the change of dissolution rate during the dissolution process, that is, the larger the molecular weight, the slower the dissolution rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.