Abstract

The morphology of a chromium-free conversion coating for AZ91D magnesium alloy was observed with an Atomic Force Microscopy. The results showed the uniform conversion coating has a relatively smooth appearance with shallow valleys. The EDX results indicated that the compositions of the coating were mainly compounds of Mg, Al, Mn, P, Ca and O. The XRD result showed that the coating contained amorphous materials and a small quantity of crystalline compound. The pitting product of the coating in NaCl water solution mainly composed of Mg, Cl, Mn, P, Ca and O. The corrosion behavior of the samples in NaCl solution was also studied by electrochemical impedance spectroscopy (EIS), which was characterized by one capacitive loop and one inductive loop. Based upon study on both a mathematical model for Faradic admittance of coating in NaCl solution and EIS, it could be considered that the inductive loop was caused by the adsorption of Cl anion and the appearance of pitting corrosion. A degradation mechanism of the coating in NaCl solution is set forth: dissolution velocity of the Cl− adsorption regions of the coating is higher than those non-adsorption regions, for Cl− anions are selective adsorption at some regions of coating surface. When the adsorption regions of coating layer are penetrated by dissolution, the pitting comes into being. The degradation mechanism of conversion coating and the mathematical model are consistent with the EIS results, polarization measurement results and coating's corrosion test results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.