Abstract

In this paper, a Barker-coded thermal wave imaging approach is reported on the detection of carbon fiber reinforced polymer (CFRP) laminate with subsurface defects, using an integrated Barker code sequence and sinusoidal carrier-modulated laser as the excitation source. Artificial flat bottom holes as subsurface defects are prepared for the experimental investigation. Cross-correlation (CC) algorithm is applied for extracting characteristics of thermal wave signal and forming the corresponding peak delay time and phase images. The effects of Barker code sequence length and carrier-modulated frequency are investigated, which are both most important factors on the detectability of BC-TWI method. The results of the experiments show 5-bit Barker code and 0.1 Hz carrier frequency are the most suitable selection for enhancing inspection capability and obtaining the highest image SNR for a given CFRP laminate material. Furthermore, a comparative experiment is carried out between BC-TWI and lock-in thermography (LIT) method by taking the defect contrast and SNR into account. The results indicate that the BC-TWI CC phase image has higher contrast and SNR than the LIT phase image.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.