Abstract

UiO-66 (UiO for University of Oslo) is a zirconium-based metal-organic framework with reverse shape selectivity, which gives an alternative way to produce high-purity n-heptane ( nHEP) used for the manufacture of high-purity pharmaceuticals. A couple of studies have shown that UiO-66 gives a high selectivity on the separation of n-/iso-alkanes. However, the microporous structure of UiO-66 causes poor mass transport during the desorption process. In this work, hierarchical-pore UiO-66 (H-UiO-66) was synthesized and utilized as an adsorbent of nHEP and methyl cyclohexane (MCH) for systematically studying the desorption process of n-/iso-alkanes. A suite of physical methods, including X-ray diffraction patterns, verified the UiO-66 structures, and high-resolution transmission electron microscopy showed the existence of hierarchical pores. N2 adsorption-desorption isotherms further confirmed the size distribution of hierarchical pores in H-UiO-66. Of particular note, the MCH/ nHEP selectivity of H-UiO-66 is similar to that of UiO-66 under the same adsorption conditions, and the desorption process of nHEP/MCH from H-UiO-66 is dramatically enhanced; namely, the desorption rates for nHEP/MCH from H-UiO-66 is enhanced by 30%/23% compared with UiO-66 at most. Moreover, desorption activation energy ( Ed) derived from temperature-programmed desorption experiments indicate that the Ed for nHEP/MCH is lower on H-UiO-66; that is, the Ed of MCH on H-UiO-66 is ∼37% lower than that on UiO-66 at most, leading to a milder condition for the desorption process. The introduction of hierarchical structures will be applicable for the optimization of the desorption process during separation on porous materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.