Abstract

Degradation mechanisms of silicone plates under harsh environment conditions are studied in this investigation. Environmental degradation of silicone free form, used as secondary optics in Light Emitting Diode LED lighting lamps and luminaires or any other applications requiring high quality optics being used, has negative implications for the optical performance. Degradation of silicone plates in harsh environment conditions was studied in salt bath and swimming water environments, using different light radiation and temperatures. Samples were exposed to harsh environment conditions for up to 4 months. Optical and chemical characteristics of exposed plates were studied using an Fourier transform infrared- attenuated total reflection FTIR-ATR spectrometer, an integrated sphere, and a Lambda 950 Ultraviolet-Visible UV-VIS spectrophotometer. Results show that 100 °C salt bath exposure had the most severe degrading effect on the optical characteristic of silicone plates. Increasing exposure time in the salt bath at that high temperature is associated with a significant deterioration of both optical (i.e., light transmission and relative radiant power value) and mechanical properties of silicone samples. On the contrary, silicone plates showed a great degree of stability against light exposure (UV at 360 nm and blue light at 450 nm).

Highlights

  • In order to control the light beam emitted from an Light Emitting Diode (LED) light source, a secondary optic, such as a free form lens, is used and aligned to the LEDs mounted on the printed circuit board (PCB)

  • The best material for a given application is highly dependent on technical requirements

  • PMMA has the disadvantages of yellowing under prolonged UV exposure and higher water absorption

Read more

Summary

Introduction

In order to control the light beam emitted from an Light Emitting Diode (LED) light source, a secondary optic, such as a free form lens, is used and aligned to the LEDs mounted on the printed circuit board (PCB). This secondary optic can be made of various optically transparent materials, such as glass, polymethylmethacrylate (PMMA), polycarbonate (PC), and silicone. The best material for a given application is highly dependent on technical requirements Each of these materials has some advantages and disadvantages. PMMA has the disadvantages of yellowing under prolonged UV exposure and higher water absorption. The main disadvantages of a PC sample are yellowing under prolonged UV exposure, PC is not eco-friendly, which is not suitable for several biomedical applications, and has a high price

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call