Abstract

Quinolone antibiotics are a common class of antibiotics in the environment and have received considerable attention. In this study, three groups of mixed degradation strains targeting mixed quinolone antibiotics, norfloxacin (NOR), and enrofloxacin (ENR) were selected through screening, enrichment, and microbial diversity detection experiments. The strains screened in this study are divided into two categories through degradation efficiency experiments, community composition detection and functional enrichment analysis. In groups mix and ENR, the resistant bacteria are the main microorganisms and the degrading bacteria are the secondary ones, while in group NOR, the strains with degradation effects are the main ones, and the strains with resistance effects are the secondary ones. What’s more, that carbon sources have little effect on the community composition of the quinolone antibiotic degrading and tolerant bacteria, the difference between groups is mainly controlled by the type of antibiotics. On this basis, we found the key to NOR degradation is the cleavage of carbon nitrogen bonds on the piperazine ring, followed by oxygenation and deethylation. Preliminary studies have confirmed that the optimal degradation conditions for NOR degrading strains, and also found that environmental factors did not significantly affect the degradation efficiency of the Mix and NOR degrading strains, which indicating that the mixed bacteria can degrade NOR in different real environments effectively such as tap water, seawater, river water, and lake water. This manuscript is the first report on a mixed strain of quinolone antibiotic microbial degradation, and it is also the study with the highest NOR degradation efficiency among known reports. It has great research value for the co-metabolism and biodegradation of quinolone antibiotics in the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.