Abstract

Well Stimulation and machinery extraction are two main methods which the engineer of oil production and related industry used to increase production .The purpose is to enhance the oil field final recovery ratio though speeds up the production rate of the petroleum fluid, especially for old oil field development. A set of methods which be suitable for the high water content maturing field about predicting output of well stimulation used in Xiaermen oilfield and providing the foundation of the oil field natural decline regular pattern. Then, a decline-analysis model is derived based on reservoir characteristic parameters and used to analyze natural decline rates for the Xiaermen oilfield developed by waterflooding. Formation factor and remaining oil saturation are included in this model, which reveals non-linear relationships between natural decline rates and the production time. We applied the model to the oil-production data from different blocks in the Xiaermen oilfield and found non-linear relationships between natural decline rates and production time as foreseen by the model, especially at the high water cut period. The results showed that the analytical model could match the natural decline rate data satisfactorily. It was also found there are non-linear relationships between oil incrementals for water flooding step stimulation and step time which different laws with permeability, net pay, and remaining oil saturation and structure place of reservoir in limit period. Decline analysis can be used to predict different oil wells production nature decline rule. Furthermore, we made computer programming in Matlab-m language to calculate the natural decline rate with any time, which made it much easier and practical to predict the future decline rate. Finally, the analytical model was compared with conventional models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.